论文标题
动态系统的循环神经网络:应用于普通微分方程,集体运动和水文建模的应用
Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling
论文作者
论文摘要
解决时空动态系统的经典方法包括统计方法,例如自回归整合移动平均线,它们假设系统以前的输出之间的线性和固定关系。线性方法的开发和实施相对简单,但它们通常不会捕获数据中的非线性关系。因此,人工神经网络(ANN)在分析和预测动态系统方面受到研究人员的关注。源自馈电ANN的复发性神经网络(RNN),使用内部存储器来处理输入的可变长度序列。这允许RNN适用于时空动力系统中的各种问题找到解决方案。因此,在本文中,我们利用RNN来处理与动态系统相关的一些特定问题。具体来说,我们分析了适用于三个任务的RNN的性能:针对具有配方误差的系统的正确洛伦兹解决方案的重建,重建损坏的集体运动轨迹的重建以及对具有尖峰的流汇时间系列的预测,以代表三个领域,即代表三个领域,是普通的微分方程,集体运动,相应的水平模型。我们在每个任务中唯一训练和测试RNN,以证明RNN在重建中的广泛适用性并预测动态系统的动力学。
Classical methods of solving spatiotemporal dynamical systems include statistical approaches such as autoregressive integrated moving average, which assume linear and stationary relationships between systems' previous outputs. Development and implementation of linear methods are relatively simple, but they often do not capture non-linear relationships in the data. Thus, artificial neural networks (ANNs) are receiving attention from researchers in analyzing and forecasting dynamical systems. Recurrent neural networks (RNN), derived from feed-forward ANNs, use internal memory to process variable-length sequences of inputs. This allows RNNs to applicable for finding solutions for a vast variety of problems in spatiotemporal dynamical systems. Thus, in this paper, we utilize RNNs to treat some specific issues associated with dynamical systems. Specifically, we analyze the performance of RNNs applied to three tasks: reconstruction of correct Lorenz solutions for a system with a formulation error, reconstruction of corrupted collective motion trajectories, and forecasting of streamflow time series possessing spikes, representing three fields, namely, ordinary differential equations, collective motion, and hydrological modeling, respectively. We train and test RNNs uniquely in each task to demonstrate the broad applicability of RNNs in reconstruction and forecasting the dynamics of dynamical systems.