论文标题
合理的Schobers和3D镜面对称性
Perverse schobers and 3d mirror symmetry
论文作者
论文摘要
所提出的物理二元性称为3D镜像对称性,将双对形构型堆栈的几何形状与几何形状有关。近年来,它是代表理论发展的指导原则。但是,由于缺乏定义,到目前为止,该主题的一小部分在数学上可以访问。 在本文中,我们将Abelian 3D镜像对称为等效,分别是由大风双旋转孢子堆叠构成的一对两类之间的等效性。在最简单的情况下,我们的定理提供了两类球形函数的光谱描述 - 即,在仿射线上具有奇异性的偏见。我们预计我们的结果可以从复的cotangent堆栈扩展到高血压品种,该品种将对高血过性类别的Koszul二元性提供先前的结果分类,$ \ Mathcal {O} $。我们的方法还提出了对几何表示理论中更多一般景点的更通用类别类别的2类别3D镜像对称性的方法。 在此过程中,我们建立了两个可能具有独立兴趣的结果:(1)在稳定的$ \ infty $ - 类别的情况下,史密斯理想理论的一种版本; (2)超过$ \ infty $ groupoids的富含$ \ infty $ - 类别的共同/限制的偏见结果。
The proposed physical duality known as 3d mirror symmetry relates the geometries of dual pairs of holomorphic symplectic stacks. It has served in recent years as a guiding principle for developments in representation theory. However, due to the lack of definitions, thus far only small pieces of the subject have been mathematically accessible. In this paper, we formulate abelian 3d mirror symmetry as an equivalence between a pair of 2-categories constructed from the algebraic and symplectic geometry, respectively, of Gale dual toric cotangent stacks. In the simplest case, our theorem provides a spectral description of the 2-category of spherical functors - i.e., perverse schobers on the affine line with singularities at the origin. We expect that our results can be extended from toric cotangent stacks to hypertoric varieties, which would provide a categorification of previous results on Koszul duality for hypertoric categories $\mathcal{O}$. Our methods also suggest approaches to 2-categorical 3d mirror symmetry for more general classes of spaces of interest in geometric representation theory. Along the way, we establish two results that may be of independent interest: (1) a version of the theory of Smith ideals in the setting of stable $\infty$-categories; and (2) an ambidexterity result for co/limits of presentable enriched $\infty$-categories over $\infty$-groupoids.