论文标题

曲线网络和表面簇的表面扩散的结构保存有限元近似

A structure-preserving finite element approximation of surface diffusion for curve networks and surface clusters

论文作者

Bao, Weizhu, Garcke, Harald, Nürnberg, Robert, Zhao, Quan

论文摘要

我们考虑曲线网络在两个维度(2D)和表面簇中的演变(3D)。界面的运动是通过表面扩散描述的,在三重接线点/线处的边界条件,其中三个接口相遇,并且在边界/线处,界面符合固定的平面边界。我们提出了一种基于合适的变分公式的参数有限元方法。构造的方法是半平的,可以证明可以满足每个封闭气泡和无条件的能量稳定性的体积保护,从而保留了流动的两个基本几何结构。此外,该方法在网格点的分布方面具有非常好的特性,因此不需要网格平滑或正则化技术。还考虑了对各向异性表面能和非中性外界的情况的概括。在各向同性和各向异性表面能的情况下,给出了二维曲线网络和三维表面簇的演化的数值结果。

We consider the evolution of curve networks in two dimensions (2d) and surface clusters in three dimensions (3d). The motion of the interfaces is described by surface diffusion, with boundary conditions at the triple junction points/lines, where three interfaces meet, and at the boundary points/lines, where an interface meets a fixed planar boundary. We propose a parametric finite element method based on a suitable variational formulation. The constructed method is semi-implicit and can be shown to satisfy the volume conservation of each enclosed bubble and the unconditional energy-stability, thus preserving the two fundamental geometric structures of the flow. Besides, the method has very good properties with respect to the distribution of mesh points, thus no mesh smoothing or regularization technique is required. A generalization of the introduced scheme to the case of anisotropic surface energies and non-neutral external boundaries is also considered. Numerical results are presented for the evolution of two-dimensional curve networks and three-dimensional surface clusters in the cases of both isotropic and anisotropic surface energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源