论文标题

随机散步的社区检测揭示了淋巴结导管网络中的异质性

Random walk informed community detection reveals heterogeneities in the lymph node conduits network

论文作者

Song, Solène, Senoussi, Malek, Escande, Paul, Villoutreix, Paul

论文摘要

网络上的随机步行被广泛用于建模随机过程,例如搜索策略,运输问题或疾病传播。这种过程的一个突出的例子是淋巴结导管网络对幼稚T细胞的指导。在这里,我们提出了一个通用框架来查找网络异质性,我们将其定义为影响随机步行的连接模式。我们建议通过以随机步行来解释社区来表征和衡量这些异质性。此外,我们使用近似值来准确有效地计算大型网络上的这些数量。最后,我们提出了一个交互式数据可视化平台,以遵循随机步行的动态及其在数据集中的特征,并在下载时针对其他数据集的现成管道。通过计算网络中检测到的随机漫步知情社区的定量特征,我们表明淋巴结导管网络在空间上是连贯的,但是,尽管具有准确的性质,但仍包含一些随机步行相关的异质性。为了评估这些特征,我们在LNCN和一系列生成的玩具网络上应用了基于扩散的社区检测和分析的相同工作流程。

Random walks on networks are widely used to model stochastic processes such as search strategies, transportation problems or disease propagation. A prominent example of such process is the guiding of naive T cells by the lymph node conduits network. Here,we propose a general framework to find network heterogeneities, which we define as connectivity patterns that affect the random walk. We propose to characterize and measure these heterogeneities by detecting communities in a way that is interpretable in terms of random walk. Moreover, we use an approximation to accurately and efficiently compute these quantities on large networks. Finally, we propose an interactive data visualization platform to follow the dynamics of the random walks and their characteristics on our datasets, and a ready-to-use pipeline for other datasets upon download. By computing quantitative feature of random walk informed communities detected within the network, we show that the lymph node conduit network is spatially coherent, however, despite its quasi-regularity, contains some random walk related heterogeneities. To evaluate these characteristics, we applied the same workflow of diffusion based community detection and analysis on the LNCN and a series of generated toy networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源