论文标题

基于图的U-NET模型,用于预测看不见的城市的流量

A Graph-based U-Net Model for Predicting Traffic in unseen Cities

论文作者

Hermes, Luca, Hammer, Barbara, Melnik, Andrew, Velioglu, Riza, Vieth, Markus, Schilling, Malte

论文摘要

准确的交通预测是使诸如重新路由汽车之类的交通管理的关键要素,以减少道路拥堵或通过动态速度限制来调节流量以保持稳定的流量。表示流量数据的一种方法是暂时更改的热图可视化流量的属性,例如速度和音量。在最近的作品中,U-NET模型在热图预测的交通预测上显示了SOTA性能。我们建议将U-NET体系结构与图层相结合,与Vanilla U-NET相比,将空间概括提高到看不见的道路网络。特别是,我们专门将现有的图形操作对地理拓扑敏感,并概括合并和升级操作以适用于图形。

Accurate traffic prediction is a key ingredient to enable traffic management like rerouting cars to reduce road congestion or regulating traffic via dynamic speed limits to maintain a steady flow. A way to represent traffic data is in the form of temporally changing heatmaps visualizing attributes of traffic, such as speed and volume. In recent works, U-Net models have shown SOTA performance on traffic forecasting from heatmaps. We propose to combine the U-Net architecture with graph layers which improves spatial generalization to unseen road networks compared to a Vanilla U-Net. In particular, we specialize existing graph operations to be sensitive to geographical topology and generalize pooling and upsampling operations to be applicable to graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源