论文标题
UA-FETREC:对联邦新闻推荐的无目标攻击
UA-FedRec: Untargeted Attack on Federated News Recommendation
论文作者
论文摘要
新闻建议对于个性化新闻发布至关重要。联合新闻建议可以在不共享其原始数据的情况下向许多客户提供协作模型学习。具有隐私的新闻建议是有希望的。但是,联邦新闻推荐的安全仍然不清楚。在本文中,我们通过提出一种名为UA-FEDREC的攻击来研究这个问题。通过利用新闻推荐和联合学习的先验知识,UA-FEDREC可以用一小部分恶意客户有效地降低模型性能。首先,新闻建议的有效性在很大程度上取决于用户建模和新闻建模。我们设计了一种新闻相似性扰动方法,以使类似新闻的表示形式和更接近中断新闻建模的不同新闻的表示,并提出了一种用户模型扰动方法,以在良性更新的相反方向上进行恶意用户更新以中断用户建模。其次,来自不同客户端的更新通常是通过基于其样本量的加权平衡来汇总的。我们提出了一种数量扰动方法,以在合理范围内扩大恶意客户的样本量,以扩大恶意更新的影响。在两个现实世界数据集上进行的广泛实验表明,即使应用防御,UA-FEDREC也可以有效地降低现有联合新闻推荐方法的准确性。我们的研究揭示了现有的联合新闻推荐系统中的一个关键安全问题,并呼吁进行研究工作以解决该问题。
News recommendation is critical for personalized news distribution. Federated news recommendation enables collaborative model learning from many clients without sharing their raw data. It is promising for privacy-preserving news recommendation. However, the security of federated news recommendation is still unclear. In this paper, we study this problem by proposing an untargeted attack called UA-FedRec. By exploiting the prior knowledge of news recommendation and federated learning, UA-FedRec can effectively degrade the model performance with a small percentage of malicious clients. First, the effectiveness of news recommendation highly depends on user modeling and news modeling. We design a news similarity perturbation method to make representations of similar news farther and those of dissimilar news closer to interrupt news modeling, and propose a user model perturbation method to make malicious user updates in opposite directions of benign updates to interrupt user modeling. Second, updates from different clients are typically aggregated by weighted-averaging based on their sample sizes. We propose a quantity perturbation method to enlarge sample sizes of malicious clients in a reasonable range to amplify the impact of malicious updates. Extensive experiments on two real-world datasets show that UA-FedRec can effectively degrade the accuracy of existing federated news recommendation methods, even when defense is applied. Our study reveals a critical security issue in existing federated news recommendation systems and calls for research efforts to address the issue.