论文标题

Anderson的超线性融合加速了牛顿的求解固定Navier-Stokes方程的方法

Superlinear convergence of Anderson accelerated Newton's method for solving stationary Navier-Stokes equations

论文作者

Xiao, Mengying

论文摘要

本文研究了牛顿的迭代,随着安德森加速度应用于解决不可压缩的稳定纳维尔 - stokes方程。我们表明,这种方法以良好的初始猜测进行了超线性的收敛,此外,与小安德森(Anderson)深度相比,大安德森(Anderson)深度降低了收敛速度。我们观察到数值测试证实了这些分析收敛的结果,此外,安德森加速度有时会扩大牛顿方法的收敛域。

This paper studies the performance Newton's iteration applied with Anderson acceleration for solving the incompressible steady Navier-Stokes equations. We manifest that this method converges superlinearly with a good initial guess, and moreover, a large Anderson depth decelerates the convergence speed comparing to a small Anderson depth. We observe that the numerical tests confirm these analytical convergence results, and in addition, Anderson acceleration sometimes enlarges the domain of convergence for Newton's method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源