论文标题

在线学习到航天器内存转储优化的应用

An Application of Online Learning to Spacecraft Memory Dump Optimization

论文作者

Cesari, Tommaso, Pergoli, Jonathan, Maestrini, Michele, Di Lizia, Pierluigi

论文摘要

在本文中,我们向空间操作领域的专家建议介绍了在线学习的现实应用,并对来自哥白尼Sentinel-6卫星的现实生活数据进行了测试。我们表明,与传统技术相比,在航天器存储器库优化的优化中,一种轻巧的跟随算法会导致性能增长超过$ 60 \%$。

In this paper, we present a real-world application of online learning with expert advice to the field of Space Operations, testing our theory on real-life data coming from the Copernicus Sentinel-6 satellite. We show that in Spacecraft Memory Dump Optimization, a lightweight Follow-The-Leader algorithm leads to an increase in performance of over $60\%$ when compared to traditional techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源