论文标题

从城市自然主义道路交通数据中迈向无监督的测试方案提取自动驾驶系统

Toward Unsupervised Test Scenario Extraction for Automated Driving Systems from Urban Naturalistic Road Traffic Data

论文作者

Weber, Nico, Thiem, Christoph, Konigorski, Ulrich

论文摘要

基于方案的测试是一种有前途的方法,可以解决证明配备自动驾驶系统的车辆安全行为的挑战。由于理论上可以在实际的道路交通中发生无限数量的混凝土场景,因此在这些系统的安全相关行为方面提取方案的提取是成功验证和验证的关键方面。因此,提出了一种从自然主义道路交通数据中提取多模式城市交通情况的方法,提出了最大程度地减少(可能有偏见的)先前专家知识的数量。所介绍的方法不是通过将具体的方案提取到预定义的功能方案中,而是通过将具体的场景提取到预定的功能方案中,而是部署了无监督的机器学习管道。该方法允许探索数据的未知性质及其解释为专家无法预料的测试场景。该方法的自然主义道路交通数据在IND和硅谷交叉点数据集中的城市交叉点上进行了评估。为此,分析了群集方法(K-均值,层次聚类和DBSCAN)的情况最佳(指基于规则的实现)。随后,使用层次聚类的结果表明,从4个簇移动到4个簇时,总体准确性约为20%,而饱和效应始于41个簇,总准确度为84%。在功能场景数量(即聚类的准确性)和测试工作之间的权衡背景下,这些观察结果可能是有价值的贡献。讨论了观察到的不同簇的准确性变化的可能原因,每个群集的总数固定总数给定簇数。

Scenario-based testing is a promising approach to solve the challenge of proving the safe behavior of vehicles equipped with automated driving systems. Since an infinite number of concrete scenarios can theoretically occur in real-world road traffic, the extraction of scenarios relevant in terms of the safety-related behavior of these systems is a key aspect for their successful verification and validation. Therefore, a method for extracting multimodal urban traffic scenarios from naturalistic road traffic data in an unsupervised manner, minimizing the amount of (potentially biased) prior expert knowledge, is proposed. Rather than an (elaborate) rule-based assignment by extracting concrete scenarios into predefined functional scenarios, the presented method deploys an unsupervised machine learning pipeline. The approach allows exploring the unknown nature of the data and their interpretation as test scenarios that experts could not have anticipated. The method is evaluated for naturalistic road traffic data at urban intersections from the inD and the Silicon Valley Intersections datasets. For this purpose, it is analyzed with which clustering approach (K-Means, hierarchical clustering, and DBSCAN) the scenario extraction method performs best (referring to an elaborate rule-based implementation). Subsequently, using hierarchical clustering the results show both a jump in overall accuracy of around 20% when moving from 4 to 5 clusters and a saturation effect starting at 41 clusters with an overall accuracy of 84%. These observations can be a valuable contribution in the context of the trade-off between the number of functional scenarios (i.e., clustering accuracy) and testing effort. Possible reasons for the observed accuracy variations of different clusters, each with a fixed total number of given clusters, are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源