论文标题

汉密尔顿 - 雅各比方程的非线性半群方法 - 玩具模型

Nonlinear semigroup approach to Hamilton-Jacobi equations -- A toy model

论文作者

Jin, Liang, Yan, Jun, Zhao, Kai

论文摘要

In this paper, we discuss the existence and multiplicity problem of viscosity solution to the Hamilton-Jacobi equation $$h(x,d_x u)+λ(x)u=c,\quad x\in M,$$ where $M$ is a closed manifold and $λ:M\rightarrow\mathbb{R}$ changes signs on $M$, via nonlinear semigroup method.事实证明,当参数$ c $超过临界值时,就会发生分叉现象。作为主要结果的应用,我们详细分析了一维示例的粘度解的结构。

In this paper, we discuss the existence and multiplicity problem of viscosity solution to the Hamilton-Jacobi equation $$h(x,d_x u)+λ(x)u=c,\quad x\in M,$$ where $M$ is a closed manifold and $λ:M\rightarrow\mathbb{R}$ changes signs on $M$, via nonlinear semigroup method. It turns out that a bifurcation phenomenon occurs when parameter $c$ strides over the critical value. As an application of the main result, we analyse the structure of the set of viscosity solutions of an one-dimensional example in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源