论文标题

Lorentzian光谱Zeta在渐近的Minkowski空间上发挥作用

Lorentzian spectral zeta functions on asymptotically Minkowski spacetimes

论文作者

Dang, Nguyen Viet, Wrochna, Michał

论文摘要

在本说明中,我们考虑了Minkowski空间的扰动以及Wave Operator $ \ square_g $的更一般的空位本质上是自我偶数。我们回顾了一个最近的结果,该结果给出了洛伦兹光谱Zeta功能密度的均方根延续,即复杂功率的痕量密度$α\ mapsto(\ square_g-i \ varepsilon)^{ - α} $。在均匀的$ n \ geq 4 $中,在$ \ frac {n} {2} -1 $中的残留物显示为标量曲率的倍数,在限制$ \ varepsilon \ to 0^+$中。这产生了洛伦兹签名重力的光谱作用。

In this note, we consider perturbations of Minkowski space as well as more general spacetimes on which the wave operator $\square_g$ is essentially self-adjoint. We review a recent result which gives the meromorphic continuation of the Lorentzian spectral zeta function density, i.e. of the trace density of complex powers $α\mapsto (\square_g-i \varepsilon)^{-α}$. In even dimension $n\geq 4$, the residue at $\frac{n}{2}-1$ is shown to be a multiple of the scalar curvature in the limit $\varepsilon\to 0^+$. This yields a spectral action for gravity in Lorentzian signature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源