论文标题

关于e象正式的2道折线

On equivariantly formal 2-torus manifolds

论文作者

Yu, Li

论文摘要

2-torus歧管是一个封闭的连接平滑的N-manifold,具有非免费有效平滑$ \ Mathbb {z}^n_2 $ -action。在本文中,我们证明,只有$ \ mathbb {z}^n_2 $ -action是本地标准的,并且其轨道空间的每个面(包括整个轨道空间)是mod 2 acyclic时,我们证明了2-torus歧管是正式的。我们的研究与M. Masuda和T. Panov的消失的奇数共同体学的研究相似。作为应用程序,我们确定何时具有常规的M-INVOLTICT(即仅具有最大可能数字的隔离固定点)。

A 2-torus manifold is a closed connected smooth n-manifold with a non-free effective smooth $\mathbb{Z}^n_2$-action. In this paper, we prove that a 2-torus manifold is equivariantly formal if and only if the $\mathbb{Z}^n_2$-action is locally standard and every face of its orbit space (including the whole orbit space) is mod 2 acyclic. Our study is parallel to the study of torus manifolds with vanishing odd-degree cohomology by M. Masuda and T. Panov. As an application, we determine when such kind of 2-torus manifolds can have regular m-involutions (i.e. involutions with only isolated fixed points of the maximum possible number).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源