论文标题
来自仅添加剂同型加密的高度可扩展的海狸三生成器
Highly Scalable Beaver Triple Generator from Additive-only Homomorphic Encryption
论文作者
论文摘要
在卷积神经网络中,线性标量产物的组成,非线性激活函数和最大池计算被强烈调用。因此,为了设计和实施保护隐私,高效机器学习机制,高度要求一种实用的加密工具来安全算术计算。 SPDZ是一个有趣的安全多方计算框架,是一种有前途的技术,可以为行业规模的机器学习开发而部署,如果能够有效地生成海狸(乘法)三重离线。本文研究了利用隐私标量产品协议的安全且有效的海狸三重发电机,而这又可以由仅添加剂的同质加密(AHES)构建。与最先进的解决方案不同,该方首先将她的私人输入拆分为共享矢量,然后调用AHE来计算由单个MPC服务器管理的共享矢量的标量产品,我们将Beaver Triple Triple Generator正式在2部分共享标量产品协议的背景下正式化,然后将生成的股票分配给MPC服务器。因此,本文介绍的协议可以看作是基于AHE的最先进的解决方案的双重结构。此外,我们没有将Paillier加密作为我们以前的构造的基础或从某种同型加密继承的基础,而是提出了来自多项式环学习的AHE的替代构造(RLWE),从而有效地实现了Beaver Triple Triple Generators。
In a convolution neural network, a composition of linear scalar product, non-linear activation function and maximum pooling computations are intensively invoked. As such, to design and implement privacy-preserving, high efficiency machine learning mechanisms, one highly demands a practical crypto tool for secure arithmetic computations. SPDZ, an interesting framework of secure multi-party computations is a promising technique deployed for industry-scale machine learning development if one is able to generate Beaver (multiplication) triple offline efficiently. This paper studies secure yet efficient Beaver triple generators leveraging privacy-preserving scalar product protocols which in turn can be constructed from additive-only homomorphic encryptions(AHEs). Different from the state-of-the-art solutions, where a party first splits her private input into a shared vector and then invokes an AHE to compute scalar product of the shared vectors managed by individual MPC server, we formalize Beaver triple generators in the context of 2-party shared scalar product protocol and then dispense the generated shares to MPC servers. As such, the protocol presented in this paper can be viewed as a dual construction of the state-of-the-art AHE based solutions. Furthermore, instead of applying the Paillier encryption as a basis of our previous constructions or inheriting from somewhat homomorphic encryptions, we propose an alternative construction of AHE from polynomial ring learning with error (RLWE) which results in an efficient implementation of Beaver triple generators.