论文标题

洛伦兹环境中的连续变化纠缠动态

Continuous-variable entanglement dynamics in Lorentzian environment

论文作者

Teklu, Berihu

论文摘要

我们解决了与两个独立的结构化储层相互作用的双峰连续变量量子系统的非马克维亚纠缠动力学。我们在不执行马尔可夫和世俗近似值的情况下得出了形成纠缠的分析表达。我们观察到各种定性特征,例如纠缠猝死,动力学产生和对两种类型的洛伦兹光谱密度的保护,假设最初以双梁状态激发了两种模式。我们的定量分析表明,这些具有不同储层光谱的病例,环境温度和纠缠的初始量在这些定性特征中有显着差异。

We address the non-Markovian entanglement dynamics for bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytical expression for the entanglement of formation without performing the Markov and the secular approximations. We observe a variety of qualitative features such as entanglement sudden death, dynamical generation, and protection for two types of Lorentzian spectral densities, assuming the two modes initially excited in a twin-beam state. Our quantitative analysis shows that these cases with different reservoir spectrum, the environmental temperature and the initial amount of entanglement differ significantly in these qualitative features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源