论文标题

在具有动态障碍的3D环境中的自动无人机群导航和多目标跟踪

Autonomous Drone Swarm Navigation and Multi-target Tracking in 3D Environments with Dynamic Obstacles

论文作者

Qamar, Suleman, Khan, Saddam Hussain, Arshad, Muhammad Arif, Qamar, Maryam, Khan, Asifullah

论文摘要

人造群的自主建模是必要的,因为手动创建是一种时间密集且复杂的程序,使其不切实际。在本研究中提出了采用深厚学习学习的一种自主方法,以进行群体导航。在这种方法中,对具有静态和动态障碍物和电阻力(例如线性阻力,角阻力和重力)的复杂3D环境进行了建模,以跟踪多个动态目标。此外,为学习复杂的群体行为而设计了强大的群体形成和目标跟踪的奖励功能。由于代理的数量不是固定的,并且只有部分遵守环境,因此群体形成和导航变得具有挑战性。在这方面,提出的策略包括解决上述挑战的三个主要阶段:1)动态群管理的方法,2)避免障碍,找到目标最短的途径,3)跟踪目标和岛屿建模。动态群管理阶段将基本感觉输入转换为高级命令,以增强群体导航和分散的设置,同时保持群体大小波动。尽管在岛上的建模中,群可以根据目标数量分成单个亚军,但相反,这些亚军可能会加入以形成一个巨大的群,从而使群体能够跟踪多个目标。定制的基于最先进的强化学习算法是采用了重大结果。有希望的结果表明,我们提出的策略增强了群导航,并可以在复杂的动态环境中跟踪多个静态和动态目标。

Autonomous modeling of artificial swarms is necessary because manual creation is a time intensive and complicated procedure which makes it impractical. An autonomous approach employing deep reinforcement learning is presented in this study for swarm navigation. In this approach, complex 3D environments with static and dynamic obstacles and resistive forces (like linear drag, angular drag, and gravity) are modeled to track multiple dynamic targets. Moreover, reward functions for robust swarm formation and target tracking are devised for learning complex swarm behaviors. Since the number of agents is not fixed and has only the partial observance of the environment, swarm formation and navigation become challenging. In this regard, the proposed strategy consists of three main phases to tackle the aforementioned challenges: 1) A methodology for dynamic swarm management, 2) Avoiding obstacles, Finding the shortest path towards the targets, 3) Tracking the targets and Island modeling. The dynamic swarm management phase translates basic sensory input to high level commands to enhance swarm navigation and decentralized setup while maintaining the swarms size fluctuations. While, in the island modeling, the swarm can split into individual subswarms according to the number of targets, conversely, these subswarms may join to form a single huge swarm, giving the swarm ability to track multiple targets. Customized state of the art policy based deep reinforcement learning algorithms are employed to achieve significant results. The promising results show that our proposed strategy enhances swarm navigation and can track multiple static and dynamic targets in complex dynamic environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源