论文标题
自旋传输揭示的高阶铰链状态的拓扑性质
Topological nature of higher-order hinge states revealed by spin transport
论文作者
论文摘要
一维(1D)无间隙铰链状态是在三维(3D)高阶拓扑绝缘子和拓扑半学的依据,这是由于高阶散装对应关系。然而,到目前为止,铰链状态的拓扑保护特性仍未得到证明,因为它无法通过传统方法(例如光谱实验和量子振荡)访问。在这里,我们通过自旋电位测量测量值揭示了高阶拓扑半学CD3AS2纳米板中铰链状态的拓扑性质。当前诱导的自旋极化的结果表明,高阶铰链状态的自旋摩孔锁定与量子自旋霍尔状态的锁定相似,显示了螺旋特性。自旋极化铰链状态在室温上具有稳健性,并且可以非局部扩散大于5μm,进一步表明其免疫力受拓扑保护。我们的工作加深了对高阶拓扑材料的运输特性的理解,对于将来的电子和自旋应用程序来说应该很有价值。
One-dimensional (1D) gapless hinge states are predicated in the three-dimensional (3D) higher-order topological insulators and topological semimetals, because of the higher-order bulk-boundary correspondence. Nevertheless, the topologically protected property of the hinge states is still not demonstrated so far, because it is not accessible by conventional methods, such as spectroscopy experiments and quantum oscillations. Here, we reveal the topological nature of hinge states in the higher-order topological semimetal Cd3As2 nanoplate through spin potentiometric measurements. The results of current induced spin polarization indicate that the spin-momentum locking of the higher-order hinge state is similar to that of the quantum spin Hall state, showing the helical characteristics. The spin-polarized hinge states are robust up to room temperature and can nonlocally diffuse a long distance larger than 5 μm, further indicating their immunity protected by topology. Our work deepens the understanding of transport properties of the higher-order topological materials and should be valuable for future electronic and spintronic applications.