论文标题
用稀的N甲烷喷雾剂和预热空气的旋转爆炸的详细化学模型
Detailed chemistry modelling of rotating detonations with dilute n-heptane sprays and preheated air
论文作者
论文摘要
液体燃料的利用对于在不久的将来实现旋转爆炸发动机的商业化至关重要。在这项研究中,进行了Eulerian-Lagrangian模拟,用于用稀的N甲烷喷雾剂和预热的空气旋转爆炸燃烧。使用了二维扁平构型,并采用了具有44种物种的骨骼化学机制,并采用了112个基本反应用于N- heptane燃烧。首先分析了补充区的流量结构,液滴分布和热化学参数。结果表明,补充区的混合物是异质的,包括蒸发液滴,蒸气和空气。当总温度低于950 K时,平均当量比随着总温度而增加。当它高于950 K时,平均等效比几乎是恒定的。随后,应用化学爆炸模式分析以识别燃料补充区和反应前沿中的控制反应和主要燃烧模式。结果表明,在补充区的上游和下游,起始反应和低温反应分别占主导地位。发现来自低温化学的中间物种对于未经串联混合物中的化学爆炸模式很重要。进一步分析了物种扩散和分散液滴的影响。结果表明,液滴蒸发促进的蒸气自动点发生在补充区域。最后,研究了空气总温度对爆炸繁殖速度和RDE推进性能的影响。发现随着空气总温度的增长速度和特异性冲动增加。
Utilization of liquid fuels is crucial to enabling commercialization of rotating detonation engines in the near future. In this study, Eulerian-Lagrangian simulations are conducted for rotating detonative combustion with dilute n-heptane sprays and preheated air. Two-dimensional flattened configuration is used and a skeletal chemical mechanism with 44 species and 112 elementary reactions for n-heptane combustion is adopted. The flow structure, droplet distribution, and thermochemical parameters in the refill zone are first analyzed. It is shown that the mixture in the refill zone is heterogeneous, including evaporating droplets, vapor, and air. When the total temperature is below 950 K, the average equivalence ratio increases with the total temperature. When it is higher than 950 K, the average equivalence ratio is almost constant. Subsequently, the chemical explosive mode analysis is applied to identify the controlling reactions and dominant combustion modes in the fuel refill zone and reaction fronts. Results demonstrate that the initiation reaction and low-temperature reaction are dominant in the upstream and downstream of the refill zone, respectively. The intermediate species from low-temperature chemistry is found to be important for the chemical explosive mode in the undetonated mixture. The influence of species diffusion and dispersed droplets is further analyzed. Results show that vapor autoignition facilitated by droplet evaporation occurs in the refill zone. Finally, the effects of the air total temperature on the detonation propagation speed and RDE propulsion performance are investigated. It is found that the detonation propagation speed and specific impulse increase with air total temperature.