论文标题

未校准的模型可以改善人类合作

Uncalibrated Models Can Improve Human-AI Collaboration

论文作者

Vodrahalli, Kailas, Gerstenberg, Tobias, Zou, James

论文摘要

在AI的许多实际应用中,AI模型被用作人类用户的决策援助。 AI提供了人类(有时)将人(有时)纳入其决策过程的建议。 AI建议通常会以某种“信心”的方式介绍,人类可以用来校准他们依赖或信任建议。在本文中,我们提出了一项初步探索,该探索表明,即使原始AI经过良好校准,也可以改善人类的性能(以人为的最终预测的准确性和信心来衡量,也可以改善人类AI的表现。我们首先训练模型,以使用数千种人类相互作用的数据预测人类建议的纳入AI建议。这使我们能够明确估计如何改变AI的预测信心,从而使AI未校准,以改善最终的人类预测。我们从四个不同的任务中验证了我们的结果 - 与图像,文本和表格数据进行交流 - 涉及数百名人类参与者。我们通过模拟分析进一步支持我们的发现。我们的发现表明,与仅优化AI模型的标准范式相反,共同优化人类系统的重要性。

In many practical applications of AI, an AI model is used as a decision aid for human users. The AI provides advice that a human (sometimes) incorporates into their decision-making process. The AI advice is often presented with some measure of "confidence" that the human can use to calibrate how much they depend on or trust the advice. In this paper, we present an initial exploration that suggests showing AI models as more confident than they actually are, even when the original AI is well-calibrated, can improve human-AI performance (measured as the accuracy and confidence of the human's final prediction after seeing the AI advice). We first train a model to predict human incorporation of AI advice using data from thousands of human-AI interactions. This enables us to explicitly estimate how to transform the AI's prediction confidence, making the AI uncalibrated, in order to improve the final human prediction. We empirically validate our results across four different tasks--dealing with images, text and tabular data--involving hundreds of human participants. We further support our findings with simulation analysis. Our findings suggest the importance of jointly optimizing the human-AI system as opposed to the standard paradigm of optimizing the AI model alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源