论文标题
私人自适应优化以及附带信息
Private Adaptive Optimization with Side Information
论文作者
论文摘要
自适应优化方法已成为许多机器学习任务的默认求解器。不幸的是,适应性的好处可能会在具有差异性隐私的训练时降低,因为噪声增加了,以确保隐私降低自适应预处理的有效性。为此,我们提出了ADADP,这是一个使用非敏感的侧面信息来预处梯度的一般框架,从而可以在私人设置中有效使用自适应方法。我们正式显示ADADP减少了获得类似隐私保证所需的噪声量,从而提高了优化性能。从经验上讲,我们利用简单且随时可用的侧面信息来探索实践中ADADP的性能,与集中式和联合设置中的强大基线相比。我们的结果表明,ADADP平均提高了准确性7.7%(绝对) - 在大规模文本和图像基准上产生了最新的隐私性 - 实用性权衡。
Adaptive optimization methods have become the default solvers for many machine learning tasks. Unfortunately, the benefits of adaptivity may degrade when training with differential privacy, as the noise added to ensure privacy reduces the effectiveness of the adaptive preconditioner. To this end, we propose AdaDPS, a general framework that uses non-sensitive side information to precondition the gradients, allowing the effective use of adaptive methods in private settings. We formally show AdaDPS reduces the amount of noise needed to achieve similar privacy guarantees, thereby improving optimization performance. Empirically, we leverage simple and readily available side information to explore the performance of AdaDPS in practice, comparing to strong baselines in both centralized and federated settings. Our results show that AdaDPS improves accuracy by 7.7% (absolute) on average -- yielding state-of-the-art privacy-utility trade-offs on large-scale text and image benchmarks.