论文标题

结构感知可视化检索

Structure-aware Visualization Retrieval

论文作者

Li, Haotian, Wang, Yong, Wu, Aoyu, Wei, Huan, Qu, Huamin

论文摘要

随着数据可视化的广泛使用,已经创建并在线共享了大量基于可扩展的矢量图形(SVG)可视化。因此,越来越多的兴趣探索如何从大型语料库中检索知觉上相似的可视化,因为它可以使各种下游应用程序(例如可视化建议)受益。现有方法主要集中于可视化的视觉外观,通过将其作为位图图像。但是,基于SVG的可视化中本质上存在的结构信息被忽略了。这样的结构信息可以描述视觉元素之间的空间和分层关系,并从新的角度彻底表征可视化。本文提出了一种结构感知的方法,可以通过共同考虑视觉和结构信息来提高可视化检索的性能。我们通过定量比较,用户研究和案例研究对我们的方法进行了广泛的评估。结果证明了我们的方法的有效性及其对现有方法的优势。

With the wide usage of data visualizations, a huge number of Scalable Vector Graphic (SVG)-based visualizations have been created and shared online. Accordingly, there has been an increasing interest in exploring how to retrieve perceptually similar visualizations from a large corpus, since it can benefit various downstream applications such as visualization recommendation. Existing methods mainly focus on the visual appearance of visualizations by regarding them as bitmap images. However, the structural information intrinsically existing in SVG-based visualizations is ignored. Such structural information can delineate the spatial and hierarchical relationship among visual elements, and characterize visualizations thoroughly from a new perspective. This paper presents a structure-aware method to advance the performance of visualization retrieval by collectively considering both the visual and structural information. We extensively evaluated our approach through quantitative comparisons, a user study and case studies. The results demonstrate the effectiveness of our approach and its advantages over existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源