论文标题

在主动指纹攻击下,驻二分网络的隐私限制

Privacy Limits in Power-Law Bipartite Networks under Active Fingerprinting Attacks

论文作者

Shariatnasab, M., Shirani, F., Anwar, Z.

论文摘要

这项工作考虑了在幂律两分网络中主动指纹攻击下的基本隐私限制。该方案自然出现在社交网络分析,跟踪无线网络中的用户移动性以及法医应用程序等。研究了一个随机增长的网络生成模型(称为基于普通性的模型),在迭代中生成了两部分网络,并且在每个迭代的顶点中,都根据其分配的受欢迎程度吸引了新的边缘。结果表明,使用适当的初始流行度值选择,节点度分布遵循具有任意参数$α> 2 $的幂律分布,即具有$ d $的节点的分数与$ d^{ - α} $成比例。提出了一种活跃的指纹脱义攻击策略,称为增强信息阈值攻击策略(A-ITS),该攻击策略(A-IS)使用了攻击者对节点学位分布的了解以及脱扬义值的信息值的概念。得出了基于网络参数的A-IS成功的足够条件。通过模拟显示,拟议的攻击大大优于最先进的攻击策略。

This work considers the fundamental privacy limits under active fingerprinting attacks in power-law bipartite networks. The scenario arises naturally in social network analysis, tracking user mobility in wireless networks, and forensics applications, among others. A stochastic growing network generation model -- called the popularity-based model -- is investigated, where the bipartite network is generated iteratively, and in each iteration vertices attract new edges based on their assigned popularity values. It is shown that using the appropriate choice of initial popularity values, the node degree distribution follows a power-law distribution with arbitrary parameter $α>2$, i.e. fraction of nodes with degree $d$ is proportional to $d^{-α}$. An active fingerprinting deanonymization attack strategy called the augmented information threshold attack strategy (A-ITS) is proposed which uses the attacker's knowledge of the node degree distribution along with the concept of information values for deanonymization. Sufficient conditions for the success of the A-ITS, based on network parameters, are derived. It is shown through simulations that the proposed attack significantly outperforms the state-of-the-art attack strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源