论文标题

带有变压器的深足球字幕:数据集,与语义相关的损失和多层次评估

Deep soccer captioning with transformer: dataset, semantics-related losses, and multi-level evaluation

论文作者

Hammoudeh, Ahmad, Vanderplaetse, Bastien, Dupont, Stéphane

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This work aims at generating captions for soccer videos using deep learning. In this context, this paper introduces a dataset, model, and triple-level evaluation. The dataset consists of 22k caption-clip pairs and three visual features (images, optical flow, inpainting) for ~500 hours of \emph{SoccerNet} videos. The model is divided into three parts: a transformer learns language, ConvNets learn vision, and a fusion of linguistic and visual features generates captions. The paper suggests evaluating generated captions at three levels: syntax (the commonly used evaluation metrics such as BLEU-score and CIDEr), meaning (the quality of descriptions for a domain expert), and corpus (the diversity of generated captions). The paper shows that the diversity of generated captions has improved (from 0.07 reaching 0.18) with semantics-related losses that prioritize selected words. Semantics-related losses and the utilization of more visual features (optical flow, inpainting) improved the normalized captioning score by 28\%. The web page of this work: https://sites.google.com/view/soccercaptioning}{https://sites.google.com/view/soccercaptioning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源