论文标题

基于记录数据的井的相似性学习

Similarity learning for wells based on logging data

论文作者

Romanenkova, Evgenia, Rogulina, Alina, Shakirov, Anuar, Stulov, Nikolay, Zaytsev, Alexey, Ismailova, Leyla, Kovalev, Dmitry, Katterbauer, Klemens, AlShehri, Abdallah

论文摘要

调查地质物体的第一步之一是互化相关性。它提供了有关研究对象的结构的信息,因为它包括用于构建地质模型和评估碳氢化合物储量的框架。如今,详细的Interwell相关性依赖于井杂志数据的手动分析。因此,这是耗时的,具有主观性质。 Interwell相关性的本质构成了对地质概况之间相似性的评估。过去,通过基于规则的方法,经典的机器学习方法以及过去的深度学习方法来自动化相关性的过程。但是,大多数方法的用法和专家的固有主观性有限。我们提出了一个新颖的框架,以根据深度学习模型解决地质概况相似性估计。我们的相似性模型将井井有条的数据作为输入,并提供了井的相似性与输出相似。开发的框架使(1)可以在井中提取地质概况的模式和基本特征,以及(2)在无监督范式之后的模型训练,而无需手动分析和对井井有条数据的解释。对于模型测试,我们使用了源自新西兰和挪威的两个开放数据集。我们基于数据的相似性模型提供了高性能:基于流行的梯度提升方法,我们的模型的准确性为0.926美元,而基准的$ 0.787 $。有了他们,油\&天然气从业人员可以提高互相关质量并减少操作时间。

One of the first steps during the investigation of geological objects is the interwell correlation. It provides information on the structure of the objects under study, as it comprises the framework for constructing geological models and assessing hydrocarbon reserves. Today, the detailed interwell correlation relies on manual analysis of well-logging data. Thus, it is time-consuming and of a subjective nature. The essence of the interwell correlation constitutes an assessment of the similarities between geological profiles. There were many attempts to automate the process of interwell correlation by means of rule-based approaches, classic machine learning approaches, and deep learning approaches in the past. However, most approaches are of limited usage and inherent subjectivity of experts. We propose a novel framework to solve the geological profile similarity estimation based on a deep learning model. Our similarity model takes well-logging data as input and provides the similarity of wells as output. The developed framework enables (1) extracting patterns and essential characteristics of geological profiles within the wells and (2) model training following the unsupervised paradigm without the need for manual analysis and interpretation of well-logging data. For model testing, we used two open datasets originating in New Zealand and Norway. Our data-based similarity models provide high performance: the accuracy of our model is $0.926$ compared to $0.787$ for baselines based on the popular gradient boosting approach. With them, an oil\&gas practitioner can improve interwell correlation quality and reduce operation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源