论文标题

故障高管线图的Menger型连接性

Menger-type connectivity of line graphs of faulty hypercubes

论文作者

Jia, Huanshen, Qian, Jianguo

论文摘要

如果$ g $有min \ {deg $ _g(x)$,deg $ _g(y)$ \} $ \} $ \} $ g $ g $,则称为强烈的menger边缘连接。在本文中,我们考虑了两种类型的$ n $二维超同管网络的线图强烈的巨型边缘连接性,其边缘有故障,即$ m $ - edge-edge-degpault-doault-parterant和$ m $ $ $ $ $ $ $ - 条件的边缘耐受耐受耐受性强烈的Menger Edge连接。我们表明,任何$ n $二维超立方体的网络的线路图是$(2N-4)$ - 易于耐受的耐受耐受性的强烈的Menger Edge,以$ n \ geq 3 $ 3 $和$(4n-10)$ - 有条件的边缘耐受耐受性的耐受性强的Menger Edge连接了$ n \ geq 4 $。最大数量有故障的两个界限是最好的。

A connected graph $G$ is called strongly Menger edge connected if $G$ has min\{deg$_G(x)$, deg$_G(y)$\} edge-disjoint paths between any two distinct vertices $x$ and $y$ in $G$. In this paper, we consider two types of strongly Menger edge connectivity of the line graphs of $n$-dimensional hypercube-like networks with faulty edges, namely the $m$-edge-fault-tolerant and $m$-conditional edge-fault-tolerant strongly Menger edge connectivity. We show that the line graph of any $n$-dimensional hypercube-like network is $(2n-4)$-edge-fault-tolerant strongly Menger edge connected for $n\geq 3$ and $(4n-10)$-conditional edge-fault-tolerant strongly Menger edge connected for $n\geq 4$. The two bounds for the maximum number of faulty edges are best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源