论文标题
靶向影响复杂网络中的最大化
Targeted influence maximization in complex networks
论文作者
论文摘要
许多基于复杂网络中传播过程的实际应用程序旨在将信息传递给特定的目标节点。但是,最佳选择一组播放器来启动扩散过程仍然是一项挑战。在本文中,我们以易感感染的(SIR)模型为例,研究了目标影响最大化问题。目的是作为组合优化的组合优化,目的是确定可以最大程度地影响目标节点影响的给定数量的播种器,同时最大程度地减少对非目标节点的影响。为了找到解决此优化问题的实用解决方案,我们基于消息传递过程开发了一个理论框架,并使用非折线(NB)矩阵对平衡解决方案进行稳定分析。我们建议可以通过对由目标节点及其多步近邻居组成的子图的平衡解决方案上施加最佳扰动来选择播放器,同时避免在补体图上避免使用这种扰动,以将目标节点排除在原始网络中。我们进一步引入了一个指标,称为有针对性的集体影响,以供每个节点识别有影响力的散布器的散布过程。在合成网络和现实世界网络中验证的提出方法优于其他相互竞争的启发式方法。我们的结果提供了一个框架,用于分析目标影响最大化问题和一种实用方法,以识别现实世界应用中的散布器。
Many real-world applications based on spreading processes in complex networks aim to deliver information to specific target nodes. However, it remains challenging to optimally select a set of spreaders to initiate the spreading process. In this paper, we study the targeted influence maximization problem using a susceptible-infected-recovered (SIR) model as an example. Formulated as a combinatorial optimization, the objective is to identify a given number of spreaders that can maximize the influence over target nodes while minimize the influence over non-target nodes. To find a practical solution to this optimization problem, we develop a theoretical framework based on a message passing process and perform a stability analysis on the equilibrium solution using non-backtracking (NB) matrices. We propose that the spreaders can be selected by imposing optimal perturbation on the equilibrium solution for the subgraph consisting of the target nodes and their multi-step nearest neighbors while avoiding such perturbation on the complement graph that excludes target nodes from the original network. We further introduce a metric, termed targeted collective influence, for each node to identify influential spreaders for targeted spreading processes. The proposed method, validated in both synthetic and real-world networks, outperforms other competing heuristic approaches. Our results provide a framework for analyzing the targeted influence maximization problem and a practical method to identify spreaders in real-world applications.