论文标题

当模型失败时:重力波天文学中的后验预测检查和模型错误指定

When models fail: an introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy

论文作者

Romero-Shaw, Isobel M., Thrane, Eric, Lasky, Paul D.

论文摘要

贝叶斯推断是重力波天文学的强大工具。它使我们能够推断出合并紧凑型对象二进制文件的特性,并确定这些合并如何根据质量,自旋和红移分配为种群。由于使用贝叶斯推断越来越多地得出了关键结果,因此贝叶斯方法的审查越来越高。在这篇综述中,我们讨论了\ textit {模型错误指定}的现象,其中用贝叶斯推断获得的结果由于假定模型中的缺陷而误导了。这种缺陷会阻碍我们推论描述物理系统的真实参数。他们还可以降低我们区分“最佳拟合”模型的能力:如果两个模型对现实的描述显然是差的,则模型〜a优先于模型〜B可能会产生误导。从广义上讲,模型失败的方式有两种:无法充分描述数据(信号或噪声)的模型具有错误指定的可能性。人口模型(例如描述黑洞质量的分布)设计的人口模型可能无法充分描述由于事先指定的未指定的真实人群。我们建议使用受到重力波天文学启发的示例来发现误指定模型的测试和检查。我们包括同伴Python笔记本,以说明基本概念。

Bayesian inference is a powerful tool in gravitational-wave astronomy. It enables us to deduce the properties of merging compact-object binaries and to determine how these mergers are distributed as a population according to mass, spin, and redshift. As key results are increasingly derived using Bayesian inference, there is increasing scrutiny on Bayesian methods. In this review, we discuss the phenomenon of \textit{model misspecification}, in which results obtained with Bayesian inference are misleading because of deficiencies in the assumed model(s). Such deficiencies can impede our inferences of the true parameters describing physical systems. They can also reduce our ability to distinguish the "best fitting" model: it can be misleading to say that Model~A is preferred over Model~B if both models are manifestly poor descriptions of reality. Broadly speaking, there are two ways in which models fail: models that fail to adequately describe the data (either the signal or the noise) have misspecified likelihoods. Population models -- designed, for example, to describe the distribution of black hole masses -- may fail to adequately describe the true population due to a misspecified prior. We recommend tests and checks that are useful for spotting misspecified models using examples inspired by gravitational-wave astronomy. We include companion python notebooks to illustrate essential concepts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源