论文标题

广泛相关和粗相关的平衡的更快的无重格学习动力

Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse Correlated Equilibria

论文作者

Anagnostides, Ioannis, Farina, Gabriele, Kroer, Christian, Celli, Andrea, Sandholm, Tuomas

论文摘要

关于游戏中学习的文献的最新新兴趋势一直与为正常形式游戏中的相关性和相关性平衡提供更快的学习动力。关于广泛形式的游戏的挑战性设置更加鲜明,可以捕获顺序和同时移动以及不完美的信息。在本文中,我们为\ textit {广泛相关的平衡(efce)}建立了更快的无regret学习动力学,在多人通用不完美的信息广泛的广泛形式游戏中。当所有播放器都遵循我们的加速动力学时,播放的相关分布是$ o(t^{ - 3/4})$ - 近似efce,其中$ o(\ cdot)$ note法在游戏描述中抑制了参数。这大大提高了$ O(t^{ - 1/2})$的最佳先前率。为了实现这一目标,我们开发了一个通过预测执行加速\ emph {phi-regret最小化}的框架。我们的关键技术贡献之一 - 使我们能够采用通用模板 - 是通过对结构化马尔可夫链的精制扰动分析来表征与\ emph {触发偏差函数}相关的固定点的稳定性。此外,对于更简单的解决方案概念,广泛形式\ emph {croun}相关平衡(EFCCE),我们给出了相关固定点的新简洁的封闭形式表征,绕开了EFCE所需的固定固定分布的昂贵计算。我们的结果将EFCCE更接近\ emph {正常形式的粗糙相关平衡}就触电复杂性而言,尽管前者规定了相关性的更加令人信服的概念。最后,以标准基准进行的实验证实了我们的理论发现。

A recent emerging trend in the literature on learning in games has been concerned with providing faster learning dynamics for correlated and coarse correlated equilibria in normal-form games. Much less is known about the significantly more challenging setting of extensive-form games, which can capture both sequential and simultaneous moves, as well as imperfect information. In this paper we establish faster no-regret learning dynamics for \textit{extensive-form correlated equilibria (EFCE)} in multiplayer general-sum imperfect-information extensive-form games. When all players follow our accelerated dynamics, the correlated distribution of play is an $O(T^{-3/4})$-approximate EFCE, where the $O(\cdot)$ notation suppresses parameters polynomial in the description of the game. This significantly improves over the best prior rate of $O(T^{-1/2})$. To achieve this, we develop a framework for performing accelerated \emph{Phi-regret minimization} via predictions. One of our key technical contributions -- that enables us to employ our generic template -- is to characterize the stability of fixed points associated with \emph{trigger deviation functions} through a refined perturbation analysis of a structured Markov chain. Furthermore, for the simpler solution concept of extensive-form \emph{coarse} correlated equilibrium (EFCCE) we give a new succinct closed-form characterization of the associated fixed points, bypassing the expensive computation of stationary distributions required for EFCE. Our results place EFCCE closer to \emph{normal-form coarse correlated equilibria} in terms of the per-iteration complexity, although the former prescribes a much more compelling notion of correlation. Finally, experiments conducted on standard benchmarks corroborate our theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源