论文标题
在平行非相关性冲击时有效电子加速的机制
The mechanism of efficient electron acceleration at parallel non-relativistic shocks
论文作者
论文摘要
热电子不能直接参与电子冲击的扩散加速度,因为它们的拉莫尔半径小于冲击过渡宽度:这是众所周知的电子注入散布性休克加速度的问题。取而代之的是,必须存在一个有效的加速前过程,该过程将电子从尺度上的电磁波动中散射出比离子陀螺半径短得多。最近发现的中级不稳定性提供了一种自然的方式,可以在平行冲击中产生这种波动。不稳定性驱动器在冲击前方的离子 - 循环波(带有上游等离子体)在冲击前线,并且仅在漂移速度大于电子alfven速度的一半时才能运行。在这里,我们使用尖锐的代码执行粒子中的模拟,以研究这种不稳定性对电子加速度的影响,这是在平行的非相关性电子离子冲击下。为此,我们比较了一次冲击模拟,其中预期中间尺度不稳定将增长到被抑制的模拟。特别是,具有足够大的Alfgenic Mach数的模拟可以消除中间体的不稳定性,显示出电子加速度效率的大幅度降低(通过两个数量级)。此外,具有降低的离子与电子质量比(中间不稳定性也被抑制)的模拟不仅可以人为地排除电子加速度,而且还导致下游和冲击跨性别区中错误的电子和离子加热。这一发现为电子对电子扩散冲击加速的物理理解开辟了一条有希望的途径,这必然需要在无碰撞电子离子冲击的模拟中逼真的质量比。
Thermal electrons cannot directly participate in the process of diffusive acceleration at electron-ion shocks because their Larmor radii are smaller than the shock transition width: this is the well-known electron injection problem of diffusive shock acceleration. Instead, an efficient pre-acceleration process must exist that scatters electrons off of electromagnetic fluctuations on scales much shorter than the ion gyro radius. The recently found intermediate-scale instability provides a natural way to produce such fluctuations in parallel shocks. The instability drives comoving (with the upstream plasma) ion-cyclotron waves at the shock front and only operates when the drift speed is smaller than half of the electron Alfven speed. Here, we perform particle-in-cell simulations with the SHARP code to study the impact of this instability on electron acceleration at parallel non-relativistic, electron-ion shocks. To this end, we compare a shock simulation in which the intermediate-scale instability is expected to grow to simulations where it is suppressed. In particular, the simulation with an Alfvenic Mach number large enough to quench the intermediate instability shows a great reduction (by two orders of magnitude) of the electron acceleration efficiency. Moreover, the simulation with a reduced ion-to-electron mass ratio (where the intermediate instability is also suppressed) not only artificially precludes electron acceleration but also results in erroneous electron and ion heating in the downstream and shock transition regions. This finding opens up a promising route for a plasma physical understanding of diffusive shock acceleration of electrons, which necessarily requires realistic mass ratios in simulations of collisionless electron-ion shocks.