论文标题
运动难题:任意运动样式转移身体部位
Motion Puzzle: Arbitrary Motion Style Transfer by Body Part
论文作者
论文摘要
本文提出了运动拼图,这是一个新型的运动风格转移网络,在几个重要方面都可以提高最先进的方式。运动拼图是第一个可以控制各个身体部位运动风格的,可以进行本地样式编辑并大大增加风格化运动的范围。我们的框架旨在保持人的运动学结构,从多种样式运动中提取了风格的特征,用于不同的身体部位,并将其本地转移到目标身体部位。另一个主要优点是,它可以通过整合自适应实例标准化和注意力模块,同时保持骨架拓扑的同时将全球和本地运动风格的特质传递。因此,它可以捕获动态运动所表现出的样式,例如拍打和惊人,比以前的工作要好得多。此外,我们的框架允许使用样式标签或运动配对的数据集进行任意运动样式传输,从而使许多公开的运动数据集可用于培训。我们的框架可以轻松地与运动生成框架集成,以创建许多应用程序,例如实时运动传输。我们通过许多示例和与以前的工作进行比较来证明框架的优势。
This paper presents Motion Puzzle, a novel motion style transfer network that advances the state-of-the-art in several important respects. The Motion Puzzle is the first that can control the motion style of individual body parts, allowing for local style editing and significantly increasing the range of stylized motions. Designed to keep the human's kinematic structure, our framework extracts style features from multiple style motions for different body parts and transfers them locally to the target body parts. Another major advantage is that it can transfer both global and local traits of motion style by integrating the adaptive instance normalization and attention modules while keeping the skeleton topology. Thus, it can capture styles exhibited by dynamic movements, such as flapping and staggering, significantly better than previous work. In addition, our framework allows for arbitrary motion style transfer without datasets with style labeling or motion pairing, making many publicly available motion datasets available for training. Our framework can be easily integrated with motion generation frameworks to create many applications, such as real-time motion transfer. We demonstrate the advantages of our framework with a number of examples and comparisons with previous work.