论文标题
可重新配置在现场可编程的铁电二极管上
Reconfigurable Compute-In-Memory on Field-Programmable Ferroelectric Diodes
论文作者
论文摘要
传感器和数据生成设备的泛滥使现代计算的范式转移了从算术和逻辑中心到以数据为中心的处理。以数据为中心的处理需要在设备级别进行创新,以实现新颖的记忆(CIM)操作。 CIM体系结构构建的主要挑战是性能与它们在各种基本数据操作方面的灵活性之间的矛盾权衡。在这里,我们提出了一个无晶体管的CIM结构,该体系结构允许在低于50nm厚的铝制铝制氮化物铁二极管(FEDS)上存储,搜索和神经网络操作。我们的电路设计和设备可以在可扩展过程中直接集成在硅微处理器顶部。通过利用美联储的野外编程性,非挥发性和非线性性,当投影到45 nm节点技术上时,用细胞足迹<0.12 um2来证明搜索操作。我们进一步展示了使用美联储的4位操作的神经网络操作。我们的结果突出显示了美联储作为高效和多功能CIM平台的候选人。
The deluge of sensors and data generating devices has driven a paradigm shift in modern computing from arithmetic-logic centric to data-centric processing. Data-centric processing require innovations at device level to enable novel compute-in-memory (CIM) operations. A key challenge in construction of CIM architectures is the conflicting trade-off between the performance and their flexibility for various essential data operations. Here, we present a transistor-free CIM architecture that permits storage, search and neural network operations on sub-50nm thick Aluminum Scandium Nitride ferroelectric diodes (FeDs). Our circuit designs and devices can be directly integrated on top of Silicon microprocessors in a scalable process. By leveraging the field-programmability, non-volatility and non-linearity of FeDs, search operations are demonstrated with a cell footprint < 0.12 um2 when projected onto 45-nm node technology. We further demonstrate neural network operations with 4-bit operation using FeDs. Our results highlight FeDs as candidates for efficient and multifunctional CIM platforms.