论文标题

拓制性:用于发现拓扑材料的机器学习化学规则

Topogivity: A Machine-Learned Chemical Rule for Discovering Topological Materials

论文作者

Ma, Andrew, Zhang, Yang, Christensen, Thomas, Po, Hoi Chun, Jing, Li, Fu, Liang, Soljačić, Marin

论文摘要

拓扑材料具有非常规的电子特性,使其对基础科学和下一代技术应用具有吸引力。使用涉及基于对称性的量子波函数分析的方法发现了大多数已知的拓扑材料。在这里,我们使用机器学习来开发一种易于使用的启发式化学规则,该规则是否仅使用其化学公式塑料为拓扑,可以诊断出高精度。该启发式规则是基于一个概念,即我们称其为托管性,这是每个元素的机器学习数值,它松散地捕捉了其形成拓扑材料的趋势。接下来,我们实施了一个高通量程序,以根据启发式拓扑性规则预测发现拓扑材料,然后进行从头开始验证。这样,我们发现了使用对称指标无法诊断的新拓扑材料,其中包括一些可能有望进行实验观察的拓扑材料。

Topological materials present unconventional electronic properties that make them attractive for both basic science and next-generation technological applications. The majority of currently known topological materials have been discovered using methods that involve symmetry-based analysis of the quantum wavefunction. Here we use machine learning to develop a simple-to-use heuristic chemical rule that diagnoses with a high accuracy whether a material is topological using only its chemical formula. This heuristic rule is based on a notion that we term topogivity, a machine-learned numerical value for each element that loosely captures its tendency to form topological materials. We next implement a high-throughput procedure for discovering topological materials based on the heuristic topogivity-rule prediction followed by ab initio validation. This way, we discover new topological materials that are not diagnosable using symmetry indicators, including several that may be promising for experimental observation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源