论文标题

零拍摄学习以预测可持续设计中建筑物的能源使用

Zero Shot Learning for Predicting Energy Usage of Buildings in Sustainable Design

论文作者

Zachariah, Arun, Rao, Praveen, Corn, Brian, Davison, Dominique

论文摘要

2030年的挑战旨在到2030年将所有新的建筑物和重大翻新碳中和。应对这一挑战的潜在解决方案之一是通过创新的可持续设计策略。对于制定此类策略,重要的是要了解各种建筑因素如何在设计时(设计时间)促进建筑物的能源使用。近年来,人工智能(AI)的增长为通过可用数据中的建筑因素之间的复杂关系提供了前所未有的机会来推动可持续设计。但是,基于AI的解决方案需要丰富的培训数据集,以实现良好的预测准确性。不幸的是,在许多实际应用程序中,获得培训数据集很耗时且昂贵。出于这些原因,我们解决了准确预测新建或未知建筑物类型的能量使用的问题,即那些没有任何培训数据的建筑类型。我们提出了一种基于零射门学习(ZSL)的新方法来解决这个问题。我们的方法使用辅助信息从建筑能源建模专家来预测给定的新/未知建筑物类型的最接近的建筑类型。然后,我们使用训练过程中学到的模型来获得K-Closest建筑类型的预测能量使用,并使用加权平均函数组合预测值。我们在数据集上评估了我们的方法,该数据集包含使用BuildSimHub生成的五种建筑类型,这是一个流行的建筑能源建模平台。与在已知建筑类型的整个数据集中训练的回归模型(基于XGBOOST)相比,我们的方法达到了更好的平均准确性。

The 2030 Challenge is aimed at making all new buildings and major renovations carbon neutral by 2030. One of the potential solutions to meet this challenge is through innovative sustainable design strategies. For developing such strategies it is important to understand how the various building factors contribute to energy usage of a building, right at design time. The growth of artificial intelligence (AI) in recent years provides an unprecedented opportunity to advance sustainable design by learning complex relationships between building factors from available data. However, rich training datasets are needed for AI-based solutions to achieve good prediction accuracy. Unfortunately, obtaining training datasets are time consuming and expensive in many real-world applications. Motivated by these reasons, we address the problem of accurately predicting the energy usage of new or unknown building types, i.e., those building types that do not have any training data. We propose a novel approach based on zero-shot learning (ZSL) to solve this problem. Our approach uses side information from building energy modeling experts to predict the closest building types for a given new/unknown building type. We then obtain the predicted energy usage for the k-closest building types using the models learned during training and combine the predicted values using a weighted averaging function. We evaluated our approach on a dataset containing five building types generated using BuildSimHub, a popular platform for building energy modeling. Our approach achieved better average accuracy than a regression model (based on XGBoost) trained on the entire dataset of known building types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源