论文标题

帮助我探索:基于图的自动座位代理的最小社会干预措施

Help Me Explore: Minimal Social Interventions for Graph-Based Autotelic Agents

论文作者

Akakzia, Ahmed, Serris, Olivier, Sigaud, Olivier, Colas, Cédric

论文摘要

为了寻求自治的代理人学习开放式技能的曲目,大多数作品都采用了piagetian的观点:学习轨迹是发展代理与其物理环境之间相互作用的结果。另一方面,维果斯基的观点强调了社会文化环境的中心地位:较高的认知功能来自代理商内部化的社会文化过程的传播。本文认为,这两种观点都可以在学习自动代理人的学习中以促进其技能的掌握。为此,我们做出了两个贡献:1)一种新型的社会互动协议,称为帮助我探索(HME),在该协议中,自动代理人可以从个人和社会引导的探索中受益。在社会情节中,社会伙伴在学习代理人知识的前沿提出了目标。在自动情节中,代理可以学会掌握自己的发现目标,或者自主排练失败的社会目标; 2)GANGSTR,一种基于图形的自动固定剂,用于操纵域,能够将目标分解为中间子目标序列。我们表明,在HME中学习时,Gangstr通过仅使用很少的社交干预措施来掌握最复杂的配置(例如5个块的堆栈)来克服其个人学习限制。

In the quest for autonomous agents learning open-ended repertoires of skills, most works take a Piagetian perspective: learning trajectories are the results of interactions between developmental agents and their physical environment. The Vygotskian perspective, on the other hand, emphasizes the centrality of the socio-cultural environment: higher cognitive functions emerge from transmissions of socio-cultural processes internalized by the agent. This paper argues that both perspectives could be coupled within the learning of autotelic agents to foster their skill acquisition. To this end, we make two contributions: 1) a novel social interaction protocol called Help Me Explore (HME), where autotelic agents can benefit from both individual and socially guided exploration. In social episodes, a social partner suggests goals at the frontier of the learning agent knowledge. In autotelic episodes, agents can either learn to master their own discovered goals or autonomously rehearse failed social goals; 2) GANGSTR, a graph-based autotelic agent for manipulation domains capable of decomposing goals into sequences of intermediate sub-goals. We show that when learning within HME, GANGSTR overcomes its individual learning limits by mastering the most complex configurations (e.g. stacks of 5 blocks) with only few social interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源