论文标题

近乎最佳的统计查询下限是半空间与高斯边缘的不可知的交叉点

Near-Optimal Statistical Query Lower Bounds for Agnostically Learning Intersections of Halfspaces with Gaussian Marginals

论文作者

Hsu, Daniel, Sanford, Clayton, Servedio, Rocco, Vlatakis-Gkaragkounis, Emmanouil-Vasileios

论文摘要

我们考虑了在挑战性的\ emph {不可思议的学习}模型中,在高斯分布下学习半空间的学习相交的问题。 Diakonikolas等人的最新工作。 (2021)表明,任何统计查询(sq)算法用于不稳定地学习$ k $ halfspaces $ \ mathbb {r}^n $的相交类别的相交等级,以使多余的错误最多必须在$ n^{ - \tildeΩ(\ sqr k} $} $ n^$ n^$} $} $ n^{\ sqr k} $ n^{ - $ 2^{n^{ω(1)}} $ queries。我们通过将公差要求提高到$ n^{ - \tildeΩ(\ log k)} $来加强这一结果。由于Klivans等人的SQ算法,因此该下限是最好的。 (2008年)不可知地将此类学习到任何恒定的多余错误,使用$ n^{o(\ log k)} $公差查询$ n^{ - o(\ log k)} $。我们证明了下限的两个变体,每种变体都结合了Diakonikolas等人的成分。 (2021)(延伸)由于Dachman-Soled等人而引起的不可知论SQ下限的早期方法。 (2014)。我们的方法还产生了不可知的SQ学习“凸子空间juntas”类(由Vempala,2010年研究)和具有界面高斯表面积的集合的下限;所有这些下限几乎都是最佳的,因为它们基本上与Klivans等人的上限匹配。 (2008)。

We consider the well-studied problem of learning intersections of halfspaces under the Gaussian distribution in the challenging \emph{agnostic learning} model. Recent work of Diakonikolas et al. (2021) shows that any Statistical Query (SQ) algorithm for agnostically learning the class of intersections of $k$ halfspaces over $\mathbb{R}^n$ to constant excess error either must make queries of tolerance at most $n^{-\tildeΩ(\sqrt{\log k})}$ or must make $2^{n^{Ω(1)}}$ queries. We strengthen this result by improving the tolerance requirement to $n^{-\tildeΩ(\log k)}$. This lower bound is essentially best possible since an SQ algorithm of Klivans et al. (2008) agnostically learns this class to any constant excess error using $n^{O(\log k)}$ queries of tolerance $n^{-O(\log k)}$. We prove two variants of our lower bound, each of which combines ingredients from Diakonikolas et al. (2021) with (an extension of) a different earlier approach for agnostic SQ lower bounds for the Boolean setting due to Dachman-Soled et al. (2014). Our approach also yields lower bounds for agnostically SQ learning the class of "convex subspace juntas" (studied by Vempala, 2010) and the class of sets with bounded Gaussian surface area; all of these lower bounds are nearly optimal since they essentially match known upper bounds from Klivans et al. (2008).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源