论文标题

在沃德数据杂志中的算术复杂性+ -

Complexity of Arithmetic in Warded Datalog+-

论文作者

Berent, Lucas, Nissl, Markus, Sallinger, Emanuel

论文摘要

Warded Datalog+ - 在规则头中使用存在的量化量扩展了基于逻辑的语言数据。高级推理任务(例如本体论推理)需要存在规则。 Warded DataLog+的理论效率保证 - 不涵盖对于数据分析(例如算术)至关重要的扩展。此外,尽管算术对于常见数据分析方案的重要性,但尚未确定任何数据级+语言的可决定性片段。我们通过定义一种扩展沃特数据++的新语言来缩小这一差距,并证明其p完整。此外,我们为新定义的语言提出了一种有效的推理算法,并为最近引入的具有整数算术的数据片片段证明了描述性复杂性结果,从而结束了一个开放的问题。我们为高度表达数据+的语言奠定了理论基础,该语言结合了高级递归规则和算术的力量,同时保证了现代AI系统中应用程序(例如知识图)的有效推理算法。

Warded Datalog+- extends the logic-based language Datalog with existential quantifiers in rule heads. Existential rules are needed for advanced reasoning tasks, e.g., ontological reasoning. The theoretical efficiency guarantees of Warded Datalog+- do not cover extensions crucial for data analytics, such as arithmetic. Moreover, despite the significance of arithmetic for common data analytic scenarios, no decidable fragment of any Datalog+- language extended with arithmetic has been identified. We close this gap by defining a new language that extends Warded Datalog+- with arithmetic and prove its P-completeness. Furthermore, we present an efficient reasoning algorithm for our newly defined language and prove descriptive complexity results for a recently introduced Datalog fragment with integer arithmetic, thereby closing an open question. We lay the theoretical foundation for highly expressive Datalog+- languages that combine the power of advanced recursive rules and arithmetic while guaranteeing efficient reasoning algorithms for applications in modern AI systems, such as Knowledge Graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源