论文标题

希尔伯特通过随机步行的不可约性定理

Hilbert's irreducibility theorem via random walks

论文作者

Bary-Soroker, Lior, Garzoni, Daniele

论文摘要

让$ g $为一个数字字段$ k $的连接线性代数群,让$γ$成为有限生成的zariski密度$ g(k)$,而让$ z \ subseteq g(k)$是薄的集合。我们证明,如果$ g/\ mathrm {r} _u(g)$是半imple,$ z $满足某些必要条件,则在$γ$的cayley图上进行长时间随机步行,键击中了$ z $的元素,$ z $的概率可忽略不计。我们在小组动作中将推论推论为Galois覆盖,特征多项式和固定点。在$ k $是全球函数字段的情况下,我们还证明了类似的结果。

Let $G$ be a connected linear algebraic group over a number field $K$, let $Γ$ be a finitely generated Zariski dense subgroup of $G(K)$ and let $Z\subseteq G(K)$ be a thin set, in the sense of Serre. We prove that, if $G/\mathrm{R}_u(G)$ is semisimple and $Z$ satisfies certain necessary conditions, then a long random walk on a Cayley graph of $Γ$ hits elements of $Z$ with negligible probability. We deduce corollaries to Galois covers, characteristic polynomials, and fixed points in group actions. We also prove analogous results in the case where $K$ is a global function field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源