论文标题

IHGNN:用于个性化产品搜索的交互式超图神经网络

IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search

论文作者

Cheng, Dian, Chen, Jiawei, Peng, Wenjun, Ye, Wenqin, Lv, Fuyu, Zhuang, Tao, Zeng, Xiaoyi, He, Xiangnan

论文摘要

良好的个性化产品搜索(PPS)系统不仅应着重于检索相关产品,而且还应考虑用户个性化的偏好。关于PPS的最新工作主要采用表示范式的表示范式,例如,从历史用户行为(又称用户,用户 - 产品 - Query-Query-Query互动)中为每个实体(包括用户,产品和查询)的学习表示形式。但是,我们认为现有方法不能充分利用关键的协作信号,该信号在历史互动中潜在揭示实体之间的亲和力。协作信号对于生成高质量表示,利用这将有益于从其连接节点中学习一个节点的代表性学习。 为了应对这一限制,在这项工作中,我们提出了一种新的IHGNN模型,用于个性化产品搜索。 IHGNN诉诸于历史用户产品疑问互动中构建的超图,该互动可以完全保留基于拓扑结构的三元关系并表达协作信号。在此基础上,我们开发了一个特定的交互式超图神经网络,以将结构信息(即协作信号)明确编码到嵌入过程中。它从HyperGraph邻居中收集信息,并明确模型邻居功能交互,以增强目标实体的表示。在三个现实世界数据集上进行的广泛实验验证了我们的提议优于最先进的。

A good personalized product search (PPS) system should not only focus on retrieving relevant products, but also consider user personalized preference. Recent work on PPS mainly adopts the representation learning paradigm, e.g., learning representations for each entity (including user, product and query) from historical user behaviors (aka. user-product-query interactions). However, we argue that existing methods do not sufficiently exploit the crucial collaborative signal, which is latent in historical interactions to reveal the affinity between the entities. Collaborative signal is quite helpful for generating high-quality representation, exploiting which would benefit the representation learning of one node from its connected nodes. To tackle this limitation, in this work, we propose a new model IHGNN for personalized product search. IHGNN resorts to a hypergraph constructed from the historical user-product-query interactions, which could completely preserve ternary relations and express collaborative signal based on the topological structure. On this basis, we develop a specific interactive hypergraph neural network to explicitly encode the structure information (i.e., collaborative signal) into the embedding process. It collects the information from the hypergraph neighbors and explicitly models neighbor feature interaction to enhance the representation of the target entity. Extensive experiments on three real-world datasets validate the superiority of our proposal over the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源