论文标题

移动扭结及其波浪包

Moving Kinks and Their Wave Packets

论文作者

Evslin, Jarah

论文摘要

最近,已为量子场理论的孤子部门制定了线性化的扰动理论。尽管它比替代形式主义(例如集体坐标)更经济,但目前仅限于唯一的孤儿,这些孤儿保持靠近基础,该理论是线性化的。结果,到目前为止,这种形式主义仅应用于固定孤子。尽管有这种限制,但我们以固定的非零动量以及可移动的,可正常的扭结波数据包构建扭结状态。前者在各个空间位置都是不可肯定的,相干的叠加,并且是哈密顿量和动量操作员的同时特征。后者是关于单个移动的经典解决方案的本地化的。为了了解波数据包,我们计算了几个简单的矩阵元素。

Recently a linearized perturbation theory has been formulated for soliton sectors of quantum field theories. While it is more economical than alternative formalisms, such as collective coordinates, it is currently limited to solitons which stay close to a base point, about which the theory is linearized. As a result, so far this formalism has only been applied to stationary solitons. In spite of this limitation, we construct kink states with fixed nonzero momenta and also moving, normalizable kink wave packets. The former are nonnormalizable, coherent superpositions of kinks at all spatial positions and are simultaneous eigenstates of the Hamiltonian and the momentum operator. The latter are localized about a single, moving classical solution. To understand the wave packets, we calculate several simple matrix elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源