论文标题
基于听觉模型的单渠道语音增强功能的基于相相的贝叶斯光谱振幅估计器
Auditory Model based Phase-Aware Bayesian Spectral Amplitude Estimator for Single-Channel Speech Enhancement
论文作者
论文摘要
贝叶斯对短期光谱振幅的估计是增强噪声损坏语音的最主要方法之一。当考虑任何具有感知相关的成本功能时,通常会显着提高这些估计器的性能。另一方面,基于阶段的语音信号处理的最新进展表明,基于光谱阶段估计方法的仅相位增强也可以提供感知到的语音质量和清晰度的关节,即使在低SNR条件下也是如此。在本文中,为了利用涉及估计和真正干净语音的STSA的感知动机成本函数,并利用了先前的光谱阶段信息,我们得出了一个相动的贝叶斯STSA估计器。成本函数的参数是根据人类听觉系统的特征选择的,即耳蜗的动态压缩非线性,感知的响度理论和耳朵的同时掩盖属性。这种类型的参数选择方案在限制语音失真的同时会导致更多的降噪。如果有先前的阶段信息可用,则派生的STSA估计器在MMSE意义上是最佳的。但是,实际上,通常只能通过采用在过去几年中开发的不同类型的光谱阶段估计技术来获得清洁语音阶段的估计。在盲设置中,我们评估了提出的贝叶斯STSA估计量,其文献中可用的不同类型的标准相估计方法。实验结果表明,所提出的估计器比传统的相盲方法可以实现绩效的实质性改善。
Bayesian estimation of short-time spectral amplitude is one of the most predominant approaches for the enhancement of the noise corrupted speech. The performance of these estimators are usually significantly improved when any perceptually relevant cost function is considered. On the other hand, the recent progress in the phase-based speech signal processing have shown that the phase-only enhancement based on spectral phase estimation methods can also provide joint improvement in the perceived speech quality and intelligibility, even in low SNR conditions. In this paper, to take advantage of both the perceptually motivated cost function involving STSAs of estimated and true clean speech and utilizing the prior spectral phase information, we have derived a phase-aware Bayesian STSA estimator. The parameters of the cost function are chosen based on the characteristics of the human auditory system, namely, the dynamic compressive nonlinearity of the cochlea, the perceived loudness theory and the simultaneous masking properties of the ear. This type of parameter selection scheme results in more noise reduction while limiting the speech distortion. The derived STSA estimator is optimal in the MMSE sense if the prior phase information is available. In practice, however, typically only an estimate of the clean speech phase can be obtained via employing different types of spectral phase estimation techniques which have been developed throughout the last few years. In a blind setup, we have evaluated the proposed Bayesian STSA estimator with different types of standard phase estimation methods available in the literature. Experimental results have shown that the proposed estimator can achieve substantial improvement in performance than the traditional phase-blind approaches.