论文标题

在有限的训练样本下使用随机矩阵理论的时空自适应处理

Space-Time Adaptive Processing Using Random Matrix Theory Under Limited Training Samples

论文作者

Song, Di, Chen, Shengyao, Xi, Feng, Liu, Zhong

论文摘要

时空自适应加工(Stap)是抑制空气中雷达系统中的地面剪切器的最有效方法之一。基本上,它采用两种形式,即全维订书机(FD-stap)和减少尺寸订阅(RD-stap)。当杂物训练样品的数量小于其系统度(DOF)的两倍时,由于杂物估计不正确,FD-stap和RD-stap的性能都严重下降。为了在有限的培训样本下增强成绩单性能,本文通过随机矩阵理论(RMT)开发了一个基本理论。通过最大程度地减少输出杂物加功率,可以通过最佳地操纵其特征值,从而产生最佳的Stap权重矢量,从而获得混乱和噪声协方差矩阵(CNCM)的反转估计。提出了两种使用RMT(RMT-FD-STAP)和使用RMT(RMT-RD-stap)的fd-stap的fd-stap。发现当训练样品的数量大于其各自的杂物DOF时,RMT-FD-stap和RMT-RD-stap的表现都大大超过了其他与其他相关的Stap算法,这些DOF远小于相应的系统DOF。理论分析和仿真证明了所提出的Stap算法的有效性和性能优势。

Space-time adaptive processing (STAP) is one of the most effective approaches to suppressing ground clutters in airborne radar systems. It basically takes two forms, i.e., full-dimension STAP (FD-STAP) and reduced-dimension STAP (RD-STAP). When the numbers of clutter training samples are less than two times their respective system degrees-of-freedom (DOF), the performances of both FD-STAP and RD-STAP degrade severely due to inaccurate clutter estimation. To enhance STAP performance under the limited training samples, this paper develops a STAP theory with random matrix theory (RMT). By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, and thus producing the optimal STAP weight vector. Two STAP algorithms, FD-STAP using RMT (RMT-FD-STAP) and RD-STAP using RMT (RMT-RD-STAP), are proposed. It is found that both RMT-FD-STAP and RMT-RD-STAP greatly outperform other-related STAP algorithms when the numbers of training samples are larger than their respective clutter DOFs, which are much less than the corresponding system DOFs. Theoretical analyses and simulation demonstrate the effectiveness and the performance advantages of the proposed STAP algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源