论文标题
瞬时曲率边界的RICCI流下的产品结构保存
Preservation of product structures under the Ricci flow with instantaneous curvature bounds
论文作者
论文摘要
在本说明中,我们证明存在一个常数$ε> 0 $,仅取决于尺寸,以便在时间$ t = 0 $时对RICCI流量的完整解决方案分配为产品,并且具有$ \fracε{t} $界定的曲率,则该解决方案始终是所有时间分配的。
In this note, we prove that there exists a constant $ε>0$, depending only on the dimension, such that if a complete solution to the Ricci flow splits as a product at time $t=0$ and has curvature bounded by $\fracε{t}$, then the solution splits for all time.