论文标题

针对黑盒类型问题中的高维不确定性量化的无监督学习方法的调查

A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems

论文作者

Kontolati, Katiana, Loukrezis, Dimitrios, Giovanis, Dimitris G., Vandanapu, Lohit, Shields, Michael D.

论文摘要

在复杂的部分微分方程(PDE)上构建具有固有高维$ \ Mathcal {O}(10^{\ ge 2})的替代模型(UQ)$ sentups(例如,强迫术语,边界条件,初始条件)带来了巨大的挑战。维度的诅咒可以通过合适的无监督学习技术来解决,用作预处理工具,以对较低维的子空间进行编码,同时保留其结构信息和有意义的属性。在这项工作中,我们审查并研究了13个维度缩小方法,包括线性和非线性,光谱,盲源分离,凸和非凸方法,并利用所得的嵌入来通过多项式混沌膨胀(PCE)构建映射到兴趣的映射。我们将一般提出的方法称为歧管PCE(M-PCE),其中歧管对应于由任何研究的尺寸减小方法产生的潜在空间。为了研究这些方法的功能和局限性,我们对三个基于物理的系统(被视为黑盒)进行数值测试,具有高维随机输入的不同复杂性,以高斯和非高斯随机领域为模型,以研究输入数据内在维度的效果。我们证明了无监督学习方法的优势和局限性,我们得出的结论是,与在文献中提出的替代算法相比,合适的M-PCE模型提供了一种具有成本效益的方法,包括最近提出的昂贵的深神经网络替代物,并且可以在Stochoctic PDES中很容易地用于高维UQ。

Constructing surrogate models for uncertainty quantification (UQ) on complex partial differential equations (PDEs) having inherently high-dimensional $\mathcal{O}(10^{\ge 2})$ stochastic inputs (e.g., forcing terms, boundary conditions, initial conditions) poses tremendous challenges. The curse of dimensionality can be addressed with suitable unsupervised learning techniques used as a pre-processing tool to encode inputs onto lower-dimensional subspaces while retaining its structural information and meaningful properties. In this work, we review and investigate thirteen dimension reduction methods including linear and nonlinear, spectral, blind source separation, convex and non-convex methods and utilize the resulting embeddings to construct a mapping to quantities of interest via polynomial chaos expansions (PCE). We refer to the general proposed approach as manifold PCE (m-PCE), where manifold corresponds to the latent space resulting from any of the studied dimension reduction methods. To investigate the capabilities and limitations of these methods we conduct numerical tests for three physics-based systems (treated as black-boxes) having high-dimensional stochastic inputs of varying complexity modeled as both Gaussian and non-Gaussian random fields to investigate the effect of the intrinsic dimensionality of input data. We demonstrate both the advantages and limitations of the unsupervised learning methods and we conclude that a suitable m-PCE model provides a cost-effective approach compared to alternative algorithms proposed in the literature, including recently proposed expensive deep neural network-based surrogates and can be readily applied for high-dimensional UQ in stochastic PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源