论文标题

白金汉Pi的维度一致学习

Dimensionally Consistent Learning with Buckingham Pi

论文作者

Bakarji, Joseph, Callaham, Jared, Brunton, Steven L., Kutz, J. Nathan

论文摘要

在缺乏理事方程式的情况下,维度分析是一种可用于提取洞察力并在物理系统中找到对称性的强大技术。给定测量变量和参数,白金汉PI定理提供了一个程序,可以找到一组跨越解决方案空间的无量纲组,尽管该集合并非唯一。我们使用可用的测量数据的对称和自相似结构提出了一种自动化方法,以根据最佳拟合,发现最能使该数据折叠到较低维空间的无量纲组。我们开发了三种数据驱动的技术,它们使用白金汉PI定理作为约束:(i)非参数输入输入输出拟合函数的约束优化问题,(ii)深度学习算法(BuckInet),该算法(BuckInet)将输入参数投射到基于第一个层和(ii II II II)的较低尺寸的输入参数的空间,以及(ii ii),(iii ii),(ii ii II II III),sandy extive nimensiques and(ii ii II II)。系数参数化动力学。我们探讨了这些方法的准确性,鲁棒性和计算复杂性,以应用于三个示例问题:旋转箍上的珠子,层层边界层和雷利 - 贝纳德对流。

In the absence of governing equations, dimensional analysis is a robust technique for extracting insights and finding symmetries in physical systems. Given measurement variables and parameters, the Buckingham Pi theorem provides a procedure for finding a set of dimensionless groups that spans the solution space, although this set is not unique. We propose an automated approach using the symmetric and self-similar structure of available measurement data to discover the dimensionless groups that best collapse this data to a lower dimensional space according to an optimal fit. We develop three data-driven techniques that use the Buckingham Pi theorem as a constraint: (i) a constrained optimization problem with a non-parametric input-output fitting function, (ii) a deep learning algorithm (BuckiNet) that projects the input parameter space to a lower dimension in the first layer, and (iii) a technique based on sparse identification of nonlinear dynamics (SINDy) to discover dimensionless equations whose coefficients parameterize the dynamics. We explore the accuracy, robustness and computational complexity of these methods as applied to three example problems: a bead on a rotating hoop, a laminar boundary layer, and Rayleigh-Bénard convection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源