论文标题

将我的上下文化 - 强化学习的上下文案例

Contextualize Me -- The Case for Context in Reinforcement Learning

论文作者

Benjamins, Carolin, Eimer, Theresa, Schubert, Frederik, Mohan, Aditya, Döhler, Sebastian, Biedenkapp, André, Rosenhahn, Bodo, Hutter, Frank, Lindauer, Marius

论文摘要

尽管加强学习(RL)在解决越来越复杂的问题方面取得了长足的进步,但许多算法对于甚至微微的环境变化仍然很脆弱。上下文强化学习(CRL)提供了一个框架,以原则性的方式对此类变化进行建模,从而实现灵活,精确和可解释的任务规范和生成。我们的目标是展示CRL的框架如何通过有意义的基准和有关概括任务的结构性推理来改善RL中的零弹性泛化。我们确认CRL中最佳行为需要上下文信息的见解,就像在部分可观察性的其他相关领域一样。为了在CRL框架中经验验证这一点,我们提供了各种上下文扩展版本的常见RL环境。它们是第一个基准图书馆CARL的一部分,它是基于流行基准的CRL扩展而设计的,我们建议作为测试台,以进一步研究通用代理。我们表明,在上下文设置中,即使是简单的RL环境也变得具有挑战性 - 并且天真的解决方案不足以跨越复杂的上下文空间。

While Reinforcement Learning ( RL) has made great strides towards solving increasingly complicated problems, many algorithms are still brittle to even slight environmental changes. Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner, thereby enabling flexible, precise and interpretable task specification and generation. Our goal is to show how the framework of cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks. We confirm the insight that optimal behavior in cRL requires context information, as in other related areas of partial observability. To empirically validate this in the cRL framework, we provide various context-extended versions of common RL environments. They are part of the first benchmark library, CARL, designed for generalization based on cRL extensions of popular benchmarks, which we propose as a testbed to further study general agents. We show that in the contextual setting, even simple RL environments become challenging - and that naive solutions are not enough to generalize across complex context spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源