论文标题
Riemann-Roch用于堆栈基质因素化
Riemann-Roch for stacky matrix factorizations
论文作者
论文摘要
我们建立了Hirzebruch-Riemann-Roch类型定理和Grothendieck-Riemann-Roch类型定理,用于对商的Deligne-Mumford stacks进行矩阵因素化。为此,我们首先构建了一个hochschild-kostant-rosenberg类型的同构型,足以产生分类的Chern字符公式。接下来,我们在同构中发现Shklyarov的规范配对的表达。
We establish a Hirzebruch-Riemann-Roch type theorem and Grothendieck-Riemann-Roch type theorem for matrix factorizations on quotient Deligne-Mumford stacks. For this we first construct a Hochschild-Kostant-Rosenberg type isomorphism explicit enough to yield a categorical Chern character formula. We next find an expression of the canonical pairing of Shklyarov under the isomorphism.