论文标题
使用有限元元素表积分的双野外港口系统的双野外结构离散化
Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus
论文作者
论文摘要
在本文中,我们提出了一种新颖的方法,可以在保留基础结构的同时离散线性港口港口系统。我们提出了一个有限的元素外部演算制剂,能够模拟地表示保护定律,并使用单个计算网络应对混合的开放边界条件。包括开放边界条件的可能性允许复杂多物理系统的模块化组成,而外部演算配方则提供了无坐标的处理。我们的方法依赖于物理系统的双场表示,该体系在连续级别是多余的,但消除了在离散级别模仿Hodge Star Operator的需求。通过考虑代表系统的stokes-dirac结构以及将公制信息直接嵌入编码中的伴随,完全避免了对显式离散Hodge Star的需求。通过以强烈的方式施加边界条件,然后根据高斯 - legendre搭配点通过symbletic runge-kutta积分来在离散级别检索表征stokes-dirac结构的功率平衡。数值实验验证了在三维结构域中的波和麦克斯韦方程的能量平衡方面验证方法的收敛性和守恒性能。在后一个示例中,磁场和电场在离散级别保留无差异性质。
In this paper we propose a novel approach to discretize linear port-Hamiltonian systems while preserving the underlying structure. We present a finite element exterior calculus formulation that is able to mimetically represent conservation laws and cope with mixed open boundary conditions using a single computational mesh. The possibility of including open boundary conditions allows for modular composition of complex multi-physical systems whereas the exterior calculus formulation provides a coordinate-free treatment. Our approach relies on a dual-field representation of the physical system that is redundant at the continuous level but eliminates the need of mimicking the Hodge star operator at the discrete level. By considering the Stokes-Dirac structure representing the system together with its adjoint, which embeds the metric information directly in the codifferential, the need for an explicit discrete Hodge star is avoided altogether. By imposing the boundary conditions in a strong manner, the power balance characterizing the Stokes-Dirac structure is then retrieved at the discrete level via symplectic Runge-Kutta integrators based on Gauss-Legendre collocation points. Numerical experiments validate the convergence of the method and the conservation properties in terms of energy balance both for the wave and Maxwell equations in a three dimensional domain. For the latter example, the magnetic and electric fields preserve their divergence free nature at the discrete level.