论文标题

开放复合域自适应语义分割的振幅光谱转换

Amplitude Spectrum Transformation for Open Compound Domain Adaptive Semantic Segmentation

论文作者

Kundu, Jogendra Nath, Kulkarni, Akshay, Bhambri, Suvaansh, Jampani, Varun, Babu, R. Venkatesh

论文摘要

开放的复合域适应性(OCDA)已成为一种实用的适应设置,该设置考虑了单个标记的源域与多模式未标记的目标数据的化合物,以便在新颖的看不见的域上更好地将其推广。我们假设,与域相关和与任务相关的密度中间层特征的分解可改善,这可以极大地帮助OCDA。在空间CNN输出上使用对抗域的歧视器,在ART-ARTS间接尝试了这一点。但是,我们发现,深CNN特征的基于傅立叶的振幅光谱衍生出的潜在特征具有与域歧视的更可拖动的映射。在此激励的情况下,我们提出了一种新颖的特征空间幅度频谱转换(AST)。在适应过程中,我们将AST自动编码器用于两个目的。首先,通过更改AST LATENT,仔细挖掘的源目标对在特定层进行了跨域特征样式(AST-SIM)的模拟。其次,通过将其潜在固定为平均原型来正常化(ast-norm)域含量的AST工作。我们简化的适应技术不仅不含聚类,而且没有复杂的对抗对准。我们在OCDA场景细分基准中对现有艺术的领先表现。

Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting which considers a single labeled source domain against a compound of multi-modal unlabeled target data in order to generalize better on novel unseen domains. We hypothesize that an improved disentanglement of domain-related and task-related factors of dense intermediate layer features can greatly aid OCDA. Prior-arts attempt this indirectly by employing adversarial domain discriminators on the spatial CNN output. However, we find that latent features derived from the Fourier-based amplitude spectrum of deep CNN features hold a more tractable mapping with domain discrimination. Motivated by this, we propose a novel feature space Amplitude Spectrum Transformation (AST). During adaptation, we employ the AST auto-encoder for two purposes. First, carefully mined source-target instance pairs undergo a simulation of cross-domain feature stylization (AST-Sim) at a particular layer by altering the AST-latent. Second, AST operating at a later layer is tasked to normalize (AST-Norm) the domain content by fixing its latent to a mean prototype. Our simplified adaptation technique is not only clustering-free but also free from complex adversarial alignment. We achieve leading performance against the prior arts on the OCDA scene segmentation benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源