论文标题
关于两个超几何函数比率的几何特性
On geometric properties of ratio of two hypergeometric functions
论文作者
论文摘要
R.Küstner在他的2002年论文中证明了功能$ w_ {a,b,c}(z)= $ $ f(a+1,b; c; c; z; z; z)/f(a,b; c; c; z)$映射单位磁盘disk $ | z | <1 $在某些条件下,在某些情况下,在某些条件下,在某些情况下,在某些情况下,是becy $ $ $ $ $ $ a $ $ a $ a $ a $ a $ a,对于高斯高几何函数。在本文中,我们研究了$ w_ {a,b,c}的凸的顺序。特别是,我们部分解决了库斯特纳(Küstner)上述论文提出的问题。
R. Küstner proved in his 2002 paper that the function $w_{a,b,c}(z)=$ $F(a+1,b;c;z)/F(a,b;c;z)$ maps the unit disk $|z|<1$ onto a domain convex in the direction of the imaginary axis under some condition on the real parameters $a,b,c.$ Here $F(a,b;c;z)$ stands for the Gaussian hypergeometric function. In this paper, we study the order of convexity of $w_{a,b,c}.$ In particular, we partially solve the problem raised by the afore-mentioned paper by Küstner.