论文标题
找到具有贝叶斯优化的2D六角形材料的稳定结构:超出弱键入二进制系统中3D晶体的结构关系
Finding the stable structures of 2D hexagonal materials with Bayesian optimization: Beyond the structural relationship with 3D crystals in weakly-bonded binary systems
论文作者
论文摘要
结构几何形状中的石墨烯 - 石材关系是预测新型二维(2D)材料的基本原理。在这里,我们证明在二进制金属系统中并非如此。我们使用贝叶斯优化框架与密度功能理论方法相结合来确定六边形平面上原子种的稳定构型。我们表明,2D Cu-Au的优化结构表现出包含一个Au原子的Cu原子的六角形环的六边形晶格,其中Cu原子的数量大于单位单元中Au原子的数量,这是从L1 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0 $ _0的AU原子的数量。我们还表明,$ x = $ be,Zn和PD的2D Cu- $ x $具有六角形或伸长环,其中包含单位单元格中的不同原子。基于二进制Lennard-Jones模型,我们提出,这些结构可以出现在相位分离和强键的系统之间,具有不同物种之间具有原子体相互作用能量的弱结合系统。
The graphene-graphite relationship in structural geometry is a basic principle to predict novel two-dimensional (2D) materials. Here, we demonstrate that this is not the case in binary metallic systems. We use the Bayesian optimization framework combined with the density-functional theory approach to determine the stable configuration of atomic species on a hexagonal plane. We show that the optimized structure of 2D Cu-Au exhibits the hexagonal lattice of a hexagonal ring of Cu atoms containing one Au atom, where the number of the Cu atoms is larger than that of the Au atoms in the unit cell, which is difficult to speculate from the atomic distribution of CuAu in the L1$_0$ structure. We also show that 2D Cu-$X$ with $X=$ Be, Zn, and Pd have hexagonal or elongated rings containing different atoms in the unit cell. Based on the binary Lennard-Jones model, we propose that such structures can appear for weakly-bonded systems located in between the phase-separated and strongly-bonded systems with the interatomic interaction energy between different species.