论文标题

用于延迟的进化方程的二阶Magnus型积分器

A second-order Magnus-type integrator for evolution equations with delay

论文作者

Csomós, Petra, Kunszenti-Kovács, Dávid

论文摘要

我们将抽象延迟方程重写为非自主抽象的库奇问题,使我们能够为前者引入Magnus型积分器。我们证明获得的Magnus型积分器的二阶收敛性。我们还表明,如果涉及的差分运算符承认其生成的半群的常见集合,那么Magnus型积分器也将尊重这个不变的集合,从而使假设较弱以获得所需的收敛。作为一个说明性的例子,我们考虑了一个具有潜在时期和扩散的空间依赖性流行模型。

We rewrite abstract delay equations to nonautonomous abstract Cauchy problems allowing us to introduce a Magnus-type integrator for the former. We prove the second-order convergence of the obtained Magnus-type integrator. We also show that if the differential operators involved admit a common invariant set for their generated semigroups, then the Magnus-type integrator will respect this invariant set as well, allowing for much weaker assumptions to obtain the desired convergence. As an illustrative example we consider a space-dependent epidemic model with latent period and diffusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源